15 research outputs found

    Enhancing Plug and Play Capabilities in Body Area Network Protocols

    Get PDF
    This project aimed to create a plug-and-play protocol for Body Area Networks (BANs). This protocol enables communication between a diverse number of devices and a base station, regardless of equipment manufacturer. Previous BANs rely on proprietary software, or protocols that are specialized to the physical device. Our protocol takes a more universal approach, allowing any device to participate in a BAN without introducing any significant overhead or running cost to the operation of that BAN. Unlike previous approaches, any existing motes and the base station will not have to be updated. Only new devices being added to the BAN will have to implement the protocol before connecting. Our protocol introduces overhead that reduced the performance and lifetime of the motes used in our BAN

    Enhanced Laboratory Learning: Mobile Laboratory Application

    Get PDF
    With technology increasing in prevalence each day the potential for its usage in educational settings such as laboratories increases. We continued the development of a iOS mobile application for deployment in WPI Biology laboratories to serve as an alternative to traditionally lab conventions. Special attention was made to delivering a well-designed and well-documented application to ensure the ease of expanding the application in the future

    Novel Microwave Assisted Synthesis of ZnS Nanomaterials

    Get PDF
    A novel ambient pressure microwave-assisted technique is developed in which silver and indium modified ZnS is synthesised. The as prepared ZnS is characterised by X-ray diffraction, UV-Vis spectroscopy, X-ray photoelectron spectroscopy and luminescence spectroscopy. This procedure produced crystalline materials with particle sizes below 10 nm. The synthesis technique leads to defects in the crystal which induce mid energy levels in the band gap and lead to indoor light photocatalytic activity. Increasing the amount of silver causes a phase transition from cubic blende to hexagonal phase ZnS. In a comparative study, when the ZnS cubic blende is heated in a conventional chamber furnace, it is completely converted to ZnO at 600 °C. Both cubic blende and hexagonal ZnS show excellent photocatalytic activity under irradiation from a 60 watt light bulb. These ZnS samples also show significantly higher photocatalytic activity compared to the commercially available TiO2 (Evonik-Degussa P-25)

    The Mutant p53-Targeting Compound APR-246 Induces ROS-Modulating Genes in Breast Cancer Cells

    No full text
    TP53 is the most frequently mutated gene in human cancer and thus an attractive target for novel cancer therapy. Several compounds that can reactive mutant p53 protein have been identified. APR-246 is currently being tested in a phase II clinical trial in high-grade serous ovarian cancer. We have used RNA-seq analysis to study the effects of APR-246 on gene expression in human breast cancer cell lines. Although the effect of APR-246 on gene expression was largely cell line dependent, six genes were upregulated across all three cell lines studied, i.e., TRIM16, SLC7A11, TXNRD1, SRXN1, LOC344887, and SLC7A11-AS1. We did not detect upregulation of canonical p53 target genes such as CDKN1A (p21), 14-3-3σ, BBC3 (PUMA), and PMAIP1 (NOXA) by RNA-seq, but these genes were induced according to analysis by qPCR. Gene ontology analysis showed that APR-246 induced changes in pathways such as response to oxidative stress, gene expression, cell proliferation, response to nitrosative stress, and the glutathione biosynthesis process. Our results are consistent with the dual action of APR-246, i.e., reactivation of mutant p53 and modulation of redox activity. SLC7A11, TRIM16, TXNRD1, and SRXN1 are potential new pharmacodynamic biomarkers for assessing the response to APR-246 in both preclinical and clinical studies
    corecore